Greatness, Time, and Wisdom

For the reflective and thinking person…..

Enter Wonderland

Image credit: Annca, source (edited by author)


Author’s note: Following a series of life events which conspired to prevent me from writing, I’m finally publishing the remaining stories from last year’s trip, as well as more recent writings which have never been released.  Thank you for your patience, and enjoy the ride!

There’s a story in David Batstone’s book Not for Sale about a woman who works in rural Thailand to rescue children from the slave trade.  It’s a powerful, moving tale as she boldly goes into situations where she is not wanted in order to rescue them, and it left me wondering.  You see, almost no one outside of those who have read the book and she knew directly will ever hear about her.  Yet how great is the work that she does?  Almost all of us would agree that she is having a tremendous impact on the world…

View original post 347 more words

Lancashire

Although this adventure is in the past, Nathan’s enchanting tale of his continuing journey are well worth the read. Enjoy!

Enter Wonderland

Author’s note: this story was written immediately following the events of On the Road.  It was never published due to life events that followed.  Now, to the yarn!

Fear not, dear readers! The tales of my comic stinginess have only just begun!

A power nap on the bus later and I found myself at Lancaster University at 0545 Sunday, May 21. Unsurprisingly, there are no shops open and no buses at that time of the morning. Instead, I explored the campus, mooched off their free wifi, and tried to avoid the security guard for three hours until a bus to the city center arrived. Once in the city proper, I got my first glimpse at the hidden gem that is Lancaster.

Nestled deep in the English countryside, Lancaster is not a place I ever would have visited if not for my ferry to the Isle of Man leaving from…

View original post 677 more words

Progressive? Marginally.

Why the mass exodus of young people from farming?  Here is another example of  one of several problems – well identified – yet apparently laughed off by the current generation of farmers and ranchers left scratching their heads wondering why junior is leaving for good.  Sad, very sad.

Children leaving the farm.jpg
Copied from The Progressive Farmer – April 2018

Fertilize with Hay

Going along with my previous post, this article appeared in the 24 March issue of Midwest Marketer and tickled my ears.  

Check out this Bale Grazing Calculator!

This primer on bale grazing is excellent, though dated.  Since its publication, i think producers have found that plastic twine and netwrapping materials need to be removed before the livestock have access to the bales.

 

Fertilize fields with hay

Winter-feeding beef cattle on hay and pasture fields can minimize labor of hauling manure while still distributing crop nutrients.

Fertilize fields with hay

Many Beef cow-calf producers feed hay rations to cows in confinement settings during the winter months. Feeding hay on fields away from the barn is gaining popularity. Labor and machinery requirements of hauling manure can be minimized by winter-feeding beef cattle on fields. Care should be taken with feeding practices to ensure that crop nutrients are evenly distributed.

Feeding on fields is typically accomplished by strategically spacing hay bales around the field either with or without hay rings frequently referred to as bale grazing. Another feeding method on fields includes unrolling bales on the ground. Unrolling bales on the ground typically allows for better crop nutrient distribution. Spacing bales across a field creates a situation of concentrated nutrients from manure and waste hay in the areas where bales are fed. Over time, nutrient distribution can equalize with good grazing and management practices to promote soil health. Nutrients can be distributed by livestock and soil microbes over time, however, uniform nutrient spreading is more ideal for crop production yields.

Utilizing the various feeding methods can result in a wide range of hay waste. Producers need to weigh cost savings associated with winter feeding on fields and feed loss with any given feeding method.  Feeding on fields allows nearly 100 percent nutrient cycling into the soil for both phosphorous and potassium while nitrogen capture will be variable. Consequently, hay waste is not a 100 percent loss. Much of the crop nutrients from hay waste is available to the next growing crop. If hay is harvested on the farm, nutrients are simply redistributed to the feeding area. If hay is purchased, those nutrients are added into the farm nutrient pool.

Purchasing hay and bringing nutrients onto the farm can be a cost effective addition of fertilizer to the farm. The vast majority of fertilizer costs for crop production are for application of nitrogen, phosphorous and potassium. Producers should use a feed analysis of purchased feed to determine its fertilizer value. Producers can use dry matter, crude protein, phosphorous and potassium content to determine fertilizer value. Table 1. demonstrates the calculations of converting an example feed analysis to the quantities of fertilizer nutrients in a 1000 lb. bale of hay. Using an example of dry hay containing 85 percent dry matter, 10.6 percent crude protein, 0.18 percent phosphorous and 1.6 percent potassium content, the following value can be calculated:

Dry feeds will usually contain 10-15 percent moisture or 85-90 percent dry matter. A 1000 lb. bale of dry hay with 15 percent moisture will contain 850 lb. of dry matter. Ensiled feeds will contain considerably more moisture.

Protein contains 16 percent nitrogen. Crude protein is calculated by multiplying the percent nitrogen by a conversion multiplier of 6.25. From the example hay analysis, 10.6 percent crude protein can be multiplied by 0.16 or divided by 6.25 to equal a rounded off 1.7 percent nitrogen. The nitrogen content multiplied by the dry hay bale weight of 850 lb. equals 14.45 lb. of nitrogen in the bale of hay. The percent phosphorous (0.18 percent) and potassium (1.6 percent) are also multiplied by the 850 lb. of dry matter hay to equal 1.53 lb. of phosphorous and 13.6 lb. of potassium.

Producers must be aware of the differences between feed analysis and fertilizer analysis. Feed analysis are recorded as percent crude protein, elemental phosphorous, and elemental potassium. Fertilizer analysis is recorded as percent elemental nitrogen, phosphate (P2O5), and potash (K2O). Using Upper Peninsula of Michigan fertilizer prices, nitrogen is valued at $0.47/lb. N, phosphate at $0.35/lb. of P2O5, and potash at $0.325/lb. K2O.

Table 2. demonstrates the fertilizer value contained in a 1000 lb. bale of hay. Fifty percent of the nitrogen and 85 percent of the phosphate and potash are recycled through cattle back into the soil and is used for future plant growth. Some of the nutrients are lost to volatilization into the atmosphere and are retained in the animal. Referring back to the example, 50 percent of the 14.45 lb. of nitrogen contained in the hay gives 7.2 lb. of nitrogen into the soil for plant uptake. The 7.2 lb. is multiplied by $0.47/lb. to value the nitrogen at $3.38. Elemental phosphorous and potassium need to be converted to percent phosphate and potash. Elemental phosphorous 1.53 lb. is multiplied by a factor of 2.29 to equal 3.5 lb. of phosphate. Elemental potassium 13.6 lb. is multiplied by a factor of 1.2 to equal 16.3 lb. of potash. Eighty-five percent of both the phosphate and potash will be recycled into the soil for future plant uptake then multiplied by their respective unit price gives a value of $1.04 of phosphate and $2.65 of potash.

The calculated fertilizer value of the 1000 lb. bale of hay is worth $7.07/bale or $14.14/ton. Current value of this quality of hay is roughly $80-100 per ton. In this example, about 15 percent of the value of average beef quality hay can be attributed to its fertilizer value. Farms that are marginal on soil nutrient levels may consider purchasing at least a portion of their feed to increase crop nutrients on the farm and replace some portion of purchased commercial fertilizer.

Feeding hay on fields during the winter months has several advantages that beef producers can use to offset some of the production costs associated with beef production. For more information regarding the impact of feeding hay on pasture and hay fields, contact MSU Extension Educators Frank Wardynski, 906-884-4386 or wardynsk@anr.msu.edu or Jim Isleib, 906-387-2530 or isleibj@anr.msu.edu.

To Hay or not to Hay?

If, by purchasing hay, i can increase the number of employees (cows) which do not need health insurance, workman’s compensation, employee benefits, bonuses, etc and they seldom complain about the work (grazing and raising babies) they enjoy, and in so doing, also increase the soil quality by feeding microbes (making those employees happy as well), and would decrease my actual labor costs and time, wouldn’t this be a good thing?

I’m not sure!

There are many qualified experts who discourage the hay habit – and i completely agree if i had to own and operate the very expensive equipment and time needed to bale hay, which would be on my own property, thereby simply moving nutrients from one point to another and not increasing – so, am i missing a very big point?

Winter is basically 180 days in north Missouri, so if hay is the sole feed source, the amount would figure as 180 days times 30# per cow/calf pair= 5400#,  allowing some ‘waste,’ and unusually harsh weather, it would be reasonable and wise to round up to 6000#.  If it cost me 5 cents per pound delivered and unloaded at my farm, this is $300 per cow/calf unit for winter feed (180 days), the rest of the year would be 2 acres per cow/calf at the rate $55 per acre rent or $110 per annum.  Total grass/hay feed costs total $410 per cow/calf unit.  It would actually add about 12 hours of my labor to position the bales for bale grazing.  So adding another $20 per cow/calf for $430

Given that info, my farm, depending on weather, could accommodate 200 pairs, figuring 2% death loss of calves to various reasons would result in 196 calves to sell.  If i continue with what i can do and graze only through the winter (relying on fall rain to grow stockpile), then there are 98 calves to sell.  So, to compare:

Calves to sell:  196 times 400 lbs times 1.80/lb = $141,120 – $86,000 = $55,120

Calves to sell: 98 times 400 lbs times 1.80/lb = $70,560 – $22,000 = $48,560

BUT, soil quality is not increased (unless mob grazing is implemented), and certainly not as fast,  Compared to renting more acres, fence and water maintenance does not increase.

What is the right answer!!!!????  

There is time for more reading, listening, studying, and sharpening the pencil.  In the meantime, first week of April , calves will be weaned, then second vaccinations on weaned calves, by 25 April cows will begin calving for 45 days, soil sampling select paddocks, then i plan to implement UHGD (aka mob grazing).

Cheers

tauna

snowy 048

Winter grazing in north Missouri.